Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Microbe ; 4(10): e781-e789, 2023 10.
Article in English | MEDLINE | ID: mdl-37619582

ABSTRACT

BACKGROUND: Gonorrhoea is a highly prevalent sexually transmitted infection and an urgent public health concern because of increasing antibiotic resistance in Neisseria gonorrhoeae. Only ceftriaxone remains as the recommended treatment in the USA. With the prospect of new anti-gonococcal antibiotics being approved, we aimed to evaluate how to deploy a new drug to maximise its clinically useful lifespan. METHODS: We used a compartmental model of gonorrhoea transmission in a US population of men who have sex with men (MSM) to compare strategies for introducing a new antibiotic for gonorrhoea treatment. The MSM population was stratified into three sexual activity groups (low, intermediate, and high) characterised by annual rates of partner change. The four introduction strategies tested were: (1) random 50-50 allocation, where each treatment-seeking infected individual had a 50% probability of receiving either drug A (current drug; a ceftriaxone-like antibiotic) or drug B (a new antibiotic), effective at time 0; (2) combination therapy of both the current drug and the new antibiotic; (3) reserve strategy, by which the new antibiotic was held in reserve until the current therapy reached a 5% threshold prevalence of resistance; and (4) gradual switch, or the gradual introduction of the new drug until random 50-50 allocation was reached. The primary outcome of interest was the time until 5% prevalence of resistance to each of the drugs (the new drug and the current ceftriaxone-like antibiotic); sensitivity of the primary outcome to the properties of the new antibiotic, specifically the probability of resistance emergence after treatment and the fitness costs of resistance, was explored. Secondary outcomes included the time to a 1% resistance threshold for each drug, as well as population-level prevalence, mean and range annual incidence, and the cumulative number of incident gonococcal infections. FINDINGS: Under baseline model conditions, a 5% prevalence of resistance to each of drugs A and B was reached within 13·9 years with the reserve strategy, 18·2 years with the gradual switch strategy, 19·2 years with the random 50-50 allocation strategy, and 19·9 years with the combination therapy strategy. The reserve strategy was consistently inferior for mitigating antibiotic resistance under the parameter space explored and was increasingly outperformed by the other strategies as the probability of de novo resistance emergence decreased and as the fitness costs associated with resistance increased. Combination therapy tended to prolong the development of antibiotic resistance and minimise the number of annual gonococcal infections (under baseline model conditions, mean number of incident infections per year 178 641 [range 177 998-181 731] with combination therapy, 180 084 [178 011-184 405] with the reserve strategy). INTERPRETATION: Our study argues for rapid introduction of new anti-gonococcal antibiotics, recognising that the feasibility of each strategy must incorporate cost, safety, and other practical concerns. The analyses should be revisited once robust estimates of key parameters-ie, the likelihood of emergence of resistance and fitness costs of resistance for the new antibiotic-are available. FUNDING: US Centers for Disease Control and Prevention, National Institute of Allergy and Infectious Diseases.


Subject(s)
Gonorrhea , Sexual and Gender Minorities , Male , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Gonorrhea/prevention & control , Ceftriaxone/therapeutic use , Homosexuality, Male
2.
Nat Microbiol ; 8(10): 1911-1919, 2023 10.
Article in English | MEDLINE | ID: mdl-37640962

ABSTRACT

Diagnosis and treatment of Plasmodium falciparum infections are required for effective malaria control and are pre-requisites for malaria elimination efforts; hence we need to monitor emergence, evolution and spread of drug- and diagnostics-resistant parasites. We deep sequenced key drug-resistance mutations and 1,832 SNPs in the parasite genomes of 609 malaria cases collected during a diagnostic-resistance surveillance study in Ethiopia. We found that 8.0% (95% CI 7.0-9.0) of malaria cases were caused by P. falciparum carrying the candidate artemisinin partial-resistance kelch13 (K13) 622I mutation, which was less common in diagnostic-resistant parasites mediated by histidine-rich proteins 2 and 3 (pfhrp2/3) deletions than in wild-type parasites (P = 0.03). Identity-by-descent analyses showed that K13 622I parasites were significantly more related to each other than to wild type (P < 0.001), consistent with recent expansion and spread of this mutation. Pfhrp2/3-deleted parasites were also highly related, with evidence of clonal transmissions at the district level. Of concern, 8.2% of K13 622I parasites also carried the pfhrp2/3 deletions. Close monitoring of the spread of combined drug- and diagnostic-resistant parasites is needed.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Humans , Plasmodium falciparum/metabolism , Antimalarials/pharmacology , Ethiopia/epidemiology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Artemisinins/pharmacology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/drug therapy
3.
medRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37162882

ABSTRACT

Background: Doxycycline post-exposure prophylaxis (DoxyPEP) has demonstrated efficacy for prevention of bacterial sexually transmitted infections. To inform policy decisions on the use of DoxyPEP for gonorrhea prevention, we used a mathematical model to investigate its impact on resistance dynamics and the burden of infection in men who have sex with men (MSM). Methods and Findings: Using a deterministic compartmental model of gonorrhea transmission in an MSM population, we introduced DoxyPEP at various uptake levels (10-75%) and compared 20-year prevalence and resistance dynamics relative to those at baseline (i.e., no DoxyPEP introduction). Uptake of DoxyPEP resulted in initial drops in the prevalence and incidence of gonorrhea infection, but also accelerated the spread of doxycycline resistance, with increasing DoxyPEP use driving steeper initial declines followed by faster spread of resistance. This resulted in the total loss of DoxyPEP's clinical efficacy within 1-2 decades in almost all scenarios explored. The magnitude by which DoxyPEP initially reduced the prevalence of infection was constrained by the extent of pre-existing doxycycline resistant strains in the population. De novo emergence of doxycycline resistance did not influence these dynamics. Additionally, the implementation of DoxyPEP had minimal impact on extending the clinically useful lifespan of ceftriaxone monotherapy. Conclusions: Model findings suggest DoxyPEP can be an effective but short-term solution for reducing the burden of gonorrhea infection, as its selection for doxycycline-resistant strains results in loss of its prophylaxis benefit. Increasing levels of DoxyPEP uptake and higher starting prevalence of doxycycline resistance resulted in faster loss of its efficacy and had little change on extending the clinical lifespan of ceftriaxone for treatment of N. gonorrhoeae infections.

4.
Lancet Microbe ; 3(10): e753-e761, 2022 10.
Article in English | MEDLINE | ID: mdl-36057266

ABSTRACT

BACKGROUND: Assessment of disease severity associated with a novel pathogen or variant provides crucial information needed by public health agencies and governments to develop appropriate responses. The SARS-CoV-2 omicron variant of concern (VOC) spread rapidly through populations worldwide before robust epidemiological and laboratory data were available to investigate its relative severity. Here we develop a set of methods that make use of non-linked, aggregate data to promptly estimate the severity of a novel variant, compare its characteristics with those of previous VOCs, and inform data-driven public health responses. METHODS: Using daily population-level surveillance data from the National Institute for Communicable Diseases in South Africa (March 2, 2020, to Jan 28, 2022), we determined lag intervals most consistent with time from case ascertainment to hospital admission and within-hospital death through optimisation of the distance correlation coefficient in a time series analysis. We then used these intervals to estimate and compare age-stratified case-hospitalisation and case-fatality ratios across the four epidemic waves that South Africa has faced, each dominated by a different variant. FINDINGS: A total of 3 569 621 cases, 494 186 hospitalisations, and 99 954 deaths attributable to COVID-19 were included in the analyses. We found that lag intervals and disease severity were dependent on age and variant. At an aggregate level, fluctuations in cases were generally followed by a similar trend in hospitalisations within 7 days and deaths within 15 days. We noted a marked reduction in disease severity throughout the omicron period relative to previous waves (age-standardised case-fatality ratios were consistently reduced by >50%), most substantial for age strata with individuals 50 years or older. INTERPRETATION: This population-level time series analysis method, which calculates an optimal lag interval that is then used to inform the numerator of severity metrics including the case-hospitalisation and case-fatality ratio, provides useful and timely estimates of the relative effects of novel SARS-CoV-2 VOCs, especially for application in settings where resources are limited. FUNDING: National Institute for Communicable Diseases of South Africa, South African National Government.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , Communicable Diseases/epidemiology , Humans , Middle Aged , SARS-CoV-2/genetics , South Africa/epidemiology , Time Factors
5.
Nat Microbiol ; 6(10): 1289-1299, 2021 10.
Article in English | MEDLINE | ID: mdl-34580442

ABSTRACT

In Africa, most rapid diagnostic tests (RDTs) for falciparum malaria recognize histidine-rich protein 2 antigen. Plasmodium falciparum parasites lacking histidine-rich protein 2 (pfhrp2) and 3 (pfhrp3) genes escape detection by these RDTs, but it is not known whether these deletions confer sufficient selective advantage to drive rapid population expansion. By studying blood samples from a cohort of 12,572 participants enroled in a prospective, cross-sectional survey along Ethiopia's borders with Eritrea, Sudan and South Sudan using RDTs, PCR, an ultrasensitive bead-based immunoassay for antigen detection and next-generation sequencing, we estimate that histidine-rich protein 2-based RDTs would miss 9.7% (95% confidence interval 8.5-11.1) of P. falciparum malaria cases owing to pfhrp2 deletion. We applied a molecular inversion probe-targeted deep sequencing approach to identify distinct subtelomeric deletion patterns and well-established pfhrp3 deletions and to uncover recent expansion of a singular pfhrp2 deletion in all regions sampled. We propose a model in which pfhrp3 deletions have arisen independently multiple times, followed by strong positive selection for pfhrp2 deletion owing to RDT-based test-and-treatment. Existing diagnostic strategies need to be urgently reconsidered in Ethiopia, and improved surveillance for pfhrp2 deletion is needed throughout the Horn of Africa.


Subject(s)
Diagnostic Tests, Routine/adverse effects , Evolution, Molecular , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Adolescent , Adult , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Child , Cross-Sectional Studies , Ethiopia/epidemiology , Female , Gene Deletion , Genotype , Geography , Humans , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Male , Plasmodium falciparum/immunology , Plasmodium falciparum/isolation & purification , Prevalence , Prospective Studies , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Selection, Genetic , Young Adult
6.
Malar J ; 19(1): 323, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32883286

ABSTRACT

BACKGROUND: The recent expansion of tools designed to accurately quantify malaria parasite-produced antigens has enabled us to evaluate the performance of rapid diagnostic tests (RDTs) as a function of the antigens they detect-typically histidine rich protein 2 (HRP2) or lactate dehydrogenase (LDH). METHODS: For this analysis, whole blood specimens from a longitudinal study in Bancoumana, Mali were used to evaluate the performance of the ultra-sensitive HRP2-based Alere™ Malaria Ag P.f RDT (uRDT). The samples were collected as part of a transmission-blocking vaccine trial in a high transmission region for Plasmodium falciparum malaria. Furthermore, antigen dynamics after successful anti-malarial drug treatment were evaluated in these samples using the Q-Plex Human Malaria Array (4-Plex) to quantify antigen concentrations. RESULTS: The uRDT had a 50% probability of a positive result at 207 pg/mL HRP2 [95% credible interval (CrI) 160-268]. Individuals with symptomatic infection remained positive by uRDT for a median of 33 days [95% confidence interval (CI) 28-47] post anti-malarial drug treatment. Biphasic exponential decay models accurately captured the population level post-treatment dynamics of both HRP2 and Plasmodium LDH (pLDH), with the latter decaying more rapidly. Motivated by these differences in rates of decay, a novel algorithm that used HRP2:pLDH ratios to predict if an individual had active versus recently cleared P. falciparum infection was developed. The algorithm had 77.5% accuracy in correctly classifying antigen-positive individuals as those with and without active infection. CONCLUSIONS: These results characterize the performance of the ultra-sensitive RDT and demonstrate the potential for emerging antigen-quantifying technologies in the field of malaria diagnostics to be helpful tools in distinguishing between active versus recently cleared malaria infections.


Subject(s)
Antigens, Protozoan/isolation & purification , Diagnostic Tests, Routine/statistics & numerical data , L-Lactate Dehydrogenase/isolation & purification , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Protozoan Proteins/isolation & purification , Adult , Humans , Mali , Middle Aged , Sensitivity and Specificity , Young Adult
7.
Int J Offender Ther Comp Criminol ; 62(11): 3485-3498, 2018 08.
Article in English | MEDLINE | ID: mdl-29134856

ABSTRACT

To bridge a gap in access to community services for releasing state inmates, the Boston Offender Needs Delivery (BOND) project was developed as a longitudinal study (2014-2016) of adult inmates with a history of substance use and co-occurring mental health disorders returning to the community following detention in one of Massachusetts' State correctional facilities. Pre-release inmates who were wrapping up their sentence (i.e., no community supervision) and presented with mental illness and/or substance use disorder were recruited. Participants were provided substance abuse treatment immediately post-release, as well as a variety of recovery supports for a follow-up period of 6 months. This first manuscript is intended to describe the rationale behind the BOND project, as well as the methods and procedure used to collect the data.


Subject(s)
Community Integration , Mental Disorders/therapy , Mental Health Services , Prisoners , Adult , Boston , Female , Humans , Longitudinal Studies , Male , Program Development , Program Evaluation
8.
Antimicrob Agents Chemother ; 51(3): 888-95, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17158933

ABSTRACT

Staphylococcus lugdunensis is an atypically virulent coagulase-negative staphylococcal species associated with acute and destructive infections that often resemble Staphylococcus aureus infections. Several types of infection caused by S. lugdunensis (e.g., native valve endocarditis, prosthetic joint infection, and intravascular catheter infection) are associated with biofilm formation, which may lead to an inability to eradicate the infection due to the intrinsic nature of biofilms to resist high levels of antibiotics. In this study, planktonic MICs and MBCs and biofilm bactericidal concentrations of 10 antistaphylococcal antimicrobial agents were measured for 15 S. lugdunensis isolates collected from patients with endocarditis, medical device infections, or skin and soft tissue infections. Planktonic isolates were susceptible to all agents studied, but biofilms were resistant to high concentrations of most of the drugs. However, moxifloxacin was able to kill 73% of isolates growing in biofilms at

Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Staphylococcal Infections/microbiology , Staphylococcus/drug effects , Acetamides/pharmacology , Bacterial Proteins/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Humans , Linezolid , Microbial Sensitivity Tests , Nafcillin/pharmacology , Oxazolidinones/pharmacology , Penicillin-Binding Proteins , Penicillins/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Staphylococcus/growth & development , Staphylococcus/physiology , Tetracycline/pharmacology , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...